1   /*
2    * Copyright (C) 2007 The Guava Authors
3    *
4    * Licensed under the Apache License, Version 2.0 (the "License");
5    * you may not use this file except in compliance with the License.
6    * You may obtain a copy of the License at
7    *
8    * http://www.apache.org/licenses/LICENSE-2.0
9    *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  
17  package com.google.common.collect;
18  
19  import static com.google.common.base.Preconditions.checkArgument;
20  import static com.google.common.base.Preconditions.checkElementIndex;
21  import static com.google.common.base.Preconditions.checkNotNull;
22  import static com.google.common.base.Preconditions.checkPositionIndex;
23  import static com.google.common.base.Preconditions.checkPositionIndexes;
24  import static com.google.common.base.Preconditions.checkState;
25  import static com.google.common.collect.CollectPreconditions.checkNonnegative;
26  import static com.google.common.collect.CollectPreconditions.checkRemove;
27  
28  import com.google.common.annotations.Beta;
29  import com.google.common.annotations.GwtCompatible;
30  import com.google.common.annotations.VisibleForTesting;
31  import com.google.common.base.Function;
32  import com.google.common.base.Objects;
33  import com.google.common.math.IntMath;
34  import com.google.common.primitives.Ints;
35  
36  import java.io.Serializable;
37  import java.math.RoundingMode;
38  import java.util.AbstractList;
39  import java.util.AbstractSequentialList;
40  import java.util.ArrayList;
41  import java.util.Arrays;
42  import java.util.Collection;
43  import java.util.Collections;
44  import java.util.Iterator;
45  import java.util.LinkedList;
46  import java.util.List;
47  import java.util.ListIterator;
48  import java.util.NoSuchElementException;
49  import java.util.RandomAccess;
50  
51  import javax.annotation.Nullable;
52  
53  /**
54   * Static utility methods pertaining to {@link List} instances. Also see this
55   * class's counterparts {@link Sets}, {@link Maps} and {@link Queues}.
56   *
57   * <p>See the Guava User Guide article on <a href=
58   * "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Lists">
59   * {@code Lists}</a>.
60   *
61   * @author Kevin Bourrillion
62   * @author Mike Bostock
63   * @author Louis Wasserman
64   * @since 2.0 (imported from Google Collections Library)
65   */
66  @GwtCompatible(emulated = true)
67  public final class Lists {
68    private Lists() {}
69  
70    // ArrayList
71  
72    /**
73     * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and
74     * earlier).
75     *
76     * <p><b>Note:</b> if mutability is not required, use {@link
77     * ImmutableList#of()} instead.
78     *
79     * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and
80     * should be treated as deprecated. Instead, use the {@code ArrayList}
81     * {@linkplain ArrayList#ArrayList() constructor} directly, taking advantage
82     * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
83     */
84    @GwtCompatible(serializable = true)
85    public static <E> ArrayList<E> newArrayList() {
86      return new ArrayList<E>();
87    }
88  
89    /**
90     * Creates a <i>mutable</i> {@code ArrayList} instance containing the given
91     * elements.
92     *
93     * <p><b>Note:</b> essentially the only reason to use this method is when you
94     * will need to add or remove elements later. Otherwise, for non-null elements
95     * use {@link ImmutableList#of()} (for varargs) or {@link
96     * ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
97     * might be null, or you need support for {@link List#set(int, Object)}, use
98     * {@link Arrays#asList}.
99     *
100    * <p>Note that even when you do need the ability to add or remove, this method
101    * provides only a tiny bit of syntactic sugar for {@code newArrayList(}{@link
102    * Arrays#asList asList}{@code (...))}, or for creating an empty list then
103    * calling {@link Collections#addAll}. This method is not actually very useful
104    * and will likely be deprecated in the future.
105    */
106   @GwtCompatible(serializable = true)
107   public static <E> ArrayList<E> newArrayList(E... elements) {
108     checkNotNull(elements); // for GWT
109     // Avoid integer overflow when a large array is passed in
110     int capacity = computeArrayListCapacity(elements.length);
111     ArrayList<E> list = new ArrayList<E>(capacity);
112     Collections.addAll(list, elements);
113     return list;
114   }
115 
116   @VisibleForTesting static int computeArrayListCapacity(int arraySize) {
117     checkNonnegative(arraySize, "arraySize");
118 
119     // TODO(kevinb): Figure out the right behavior, and document it
120     return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
121   }
122 
123   /**
124    * Creates a <i>mutable</i> {@code ArrayList} instance containing the given
125    * elements; a very thin shortcut for creating an empty list then calling
126    * {@link Iterables#addAll}.
127    *
128    * <p><b>Note:</b> if mutability is not required and the elements are
129    * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change
130    * {@code elements} to be a {@link FluentIterable} and call
131    * {@code elements.toList()}.)
132    *
133    * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link
134    * Collection}, you don't need this method. Use the {@code ArrayList}
135    * {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking
136    * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
137    */
138   @GwtCompatible(serializable = true)
139   public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) {
140     checkNotNull(elements); // for GWT
141     // Let ArrayList's sizing logic work, if possible
142     return (elements instanceof Collection)
143         ? new ArrayList<E>(Collections2.cast(elements))
144         : newArrayList(elements.iterator());
145   }
146 
147   /**
148    * Creates a <i>mutable</i> {@code ArrayList} instance containing the given
149    * elements; a very thin shortcut for creating an empty list and then calling
150    * {@link Iterators#addAll}.
151    *
152    * <p><b>Note:</b> if mutability is not required and the elements are
153    * non-null, use {@link ImmutableList#copyOf(Iterator)} instead.
154    */
155   @GwtCompatible(serializable = true)
156   public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) {
157     ArrayList<E> list = newArrayList();
158     Iterators.addAll(list, elements);
159     return list;
160   }
161 
162   /**
163    * Creates an {@code ArrayList} instance backed by an array with the specified
164    * initial size; simply delegates to {@link ArrayList#ArrayList(int)}.
165    *
166    * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and
167    * should be treated as deprecated. Instead, use {@code new }{@link
168    * ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking
169    * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
170    * (Unlike here, there is no risk of overload ambiguity, since the {@code
171    * ArrayList} constructors very wisely did not accept varargs.)
172    *
173    * @param initialArraySize the exact size of the initial backing array for
174    *     the returned array list ({@code ArrayList} documentation calls this
175    *     value the "capacity")
176    * @return a new, empty {@code ArrayList} which is guaranteed not to resize
177    *     itself unless its size reaches {@code initialArraySize + 1}
178    * @throws IllegalArgumentException if {@code initialArraySize} is negative
179    */
180   @GwtCompatible(serializable = true)
181   public static <E> ArrayList<E> newArrayListWithCapacity(
182       int initialArraySize) {
183     checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
184     return new ArrayList<E>(initialArraySize);
185   }
186 
187   /**
188    * Creates an {@code ArrayList} instance to hold {@code estimatedSize}
189    * elements, <i>plus</i> an unspecified amount of padding; you almost
190    * certainly mean to call {@link #newArrayListWithCapacity} (see that method
191    * for further advice on usage).
192    *
193    * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case
194    * that you do want some amount of padding, it's best if you choose your
195    * desired amount explicitly.
196    *
197    * @param estimatedSize an estimate of the eventual {@link List#size()} of
198    *     the new list
199    * @return a new, empty {@code ArrayList}, sized appropriately to hold the
200    *     estimated number of elements
201    * @throws IllegalArgumentException if {@code estimatedSize} is negative
202    */
203   @GwtCompatible(serializable = true)
204   public static <E> ArrayList<E> newArrayListWithExpectedSize(
205       int estimatedSize) {
206     return new ArrayList<E>(computeArrayListCapacity(estimatedSize));
207   }
208 
209   // LinkedList
210 
211   /**
212    * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and
213    * earlier).
214    *
215    * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link
216    * ImmutableList#of()} instead.
217    *
218    * <p><b>Performance note:</b> {@link ArrayList} and {@link
219    * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in
220    * certain rare and specific situations. Unless you have spent a lot of time
221    * benchmarking your specific needs, use one of those instead.
222    *
223    * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and
224    * should be treated as deprecated. Instead, use the {@code LinkedList}
225    * {@linkplain LinkedList#LinkedList() constructor} directly, taking advantage
226    * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
227    */
228   @GwtCompatible(serializable = true)
229   public static <E> LinkedList<E> newLinkedList() {
230     return new LinkedList<E>();
231   }
232 
233   /**
234    * Creates a <i>mutable</i> {@code LinkedList} instance containing the given
235    * elements; a very thin shortcut for creating an empty list then calling
236    * {@link Iterables#addAll}.
237    *
238    * <p><b>Note:</b> if mutability is not required and the elements are
239    * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change
240    * {@code elements} to be a {@link FluentIterable} and call
241    * {@code elements.toList()}.)
242    *
243    * <p><b>Performance note:</b> {@link ArrayList} and {@link
244    * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in
245    * certain rare and specific situations. Unless you have spent a lot of time
246    * benchmarking your specific needs, use one of those instead.
247    *
248    * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link
249    * Collection}, you don't need this method. Use the {@code LinkedList}
250    * {@linkplain LinkedList#LinkedList(Collection) constructor} directly, taking
251    * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
252    */
253   @GwtCompatible(serializable = true)
254   public static <E> LinkedList<E> newLinkedList(
255       Iterable<? extends E> elements) {
256     LinkedList<E> list = newLinkedList();
257     Iterables.addAll(list, elements);
258     return list;
259   }
260 
261   /**
262    * Returns an unmodifiable list containing the specified first element and
263    * backed by the specified array of additional elements. Changes to the {@code
264    * rest} array will be reflected in the returned list. Unlike {@link
265    * Arrays#asList}, the returned list is unmodifiable.
266    *
267    * <p>This is useful when a varargs method needs to use a signature such as
268    * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload
269    * ambiguity or to enforce a minimum argument count.
270    *
271    * <p>The returned list is serializable and implements {@link RandomAccess}.
272    *
273    * @param first the first element
274    * @param rest an array of additional elements, possibly empty
275    * @return an unmodifiable list containing the specified elements
276    */
277   public static <E> List<E> asList(@Nullable E first, E[] rest) {
278     return new OnePlusArrayList<E>(first, rest);
279   }
280 
281   /** @see Lists#asList(Object, Object[]) */
282   private static class OnePlusArrayList<E> extends AbstractList<E>
283       implements Serializable, RandomAccess {
284     final E first;
285     final E[] rest;
286 
287     OnePlusArrayList(@Nullable E first, E[] rest) {
288       this.first = first;
289       this.rest = checkNotNull(rest);
290     }
291     @Override public int size() {
292       return rest.length + 1;
293     }
294     @Override public E get(int index) {
295       // check explicitly so the IOOBE will have the right message
296       checkElementIndex(index, size());
297       return (index == 0) ? first : rest[index - 1];
298     }
299     private static final long serialVersionUID = 0;
300   }
301 
302   /**
303    * Returns an unmodifiable list containing the specified first and second
304    * element, and backed by the specified array of additional elements. Changes
305    * to the {@code rest} array will be reflected in the returned list. Unlike
306    * {@link Arrays#asList}, the returned list is unmodifiable.
307    *
308    * <p>This is useful when a varargs method needs to use a signature such as
309    * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid
310    * overload ambiguity or to enforce a minimum argument count.
311    *
312    * <p>The returned list is serializable and implements {@link RandomAccess}.
313    *
314    * @param first the first element
315    * @param second the second element
316    * @param rest an array of additional elements, possibly empty
317    * @return an unmodifiable list containing the specified elements
318    */
319   public static <E> List<E> asList(
320       @Nullable E first, @Nullable E second, E[] rest) {
321     return new TwoPlusArrayList<E>(first, second, rest);
322   }
323 
324   /** @see Lists#asList(Object, Object, Object[]) */
325   private static class TwoPlusArrayList<E> extends AbstractList<E>
326       implements Serializable, RandomAccess {
327     final E first;
328     final E second;
329     final E[] rest;
330 
331     TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) {
332       this.first = first;
333       this.second = second;
334       this.rest = checkNotNull(rest);
335     }
336     @Override public int size() {
337       return rest.length + 2;
338     }
339     @Override public E get(int index) {
340       switch (index) {
341         case 0:
342           return first;
343         case 1:
344           return second;
345         default:
346           // check explicitly so the IOOBE will have the right message
347           checkElementIndex(index, size());
348           return rest[index - 2];
349       }
350     }
351     private static final long serialVersionUID = 0;
352   }
353 
354   /**
355    * Returns every possible list that can be formed by choosing one element
356    * from each of the given lists in order; the "n-ary
357    * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
358    * product</a>" of the lists. For example: <pre>   {@code
359    *
360    *   Lists.cartesianProduct(ImmutableList.of(
361    *       ImmutableList.of(1, 2),
362    *       ImmutableList.of("A", "B", "C")))}</pre>
363    *
364    * <p>returns a list containing six lists in the following order:
365    *
366    * <ul>
367    * <li>{@code ImmutableList.of(1, "A")}
368    * <li>{@code ImmutableList.of(1, "B")}
369    * <li>{@code ImmutableList.of(1, "C")}
370    * <li>{@code ImmutableList.of(2, "A")}
371    * <li>{@code ImmutableList.of(2, "B")}
372    * <li>{@code ImmutableList.of(2, "C")}
373    * </ul>
374    *
375    * <p>The result is guaranteed to be in the "traditional", lexicographical
376    * order for Cartesian products that you would get from nesting for loops:
377    * <pre>   {@code
378    *
379    *   for (B b0 : lists.get(0)) {
380    *     for (B b1 : lists.get(1)) {
381    *       ...
382    *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
383    *       // operate on tuple
384    *     }
385    *   }}</pre>
386    *
387    * <p>Note that if any input list is empty, the Cartesian product will also be
388    * empty. If no lists at all are provided (an empty list), the resulting
389    * Cartesian product has one element, an empty list (counter-intuitive, but
390    * mathematically consistent).
391    *
392    * <p><i>Performance notes:</i> while the cartesian product of lists of size
393    * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory
394    * consumption is much smaller. When the cartesian product is constructed, the
395    * input lists are merely copied. Only as the resulting list is iterated are
396    * the individual lists created, and these are not retained after iteration.
397    *
398    * @param lists the lists to choose elements from, in the order that
399    *     the elements chosen from those lists should appear in the resulting
400    *     lists
401    * @param <B> any common base class shared by all axes (often just {@link
402    *     Object})
403    * @return the Cartesian product, as an immutable list containing immutable
404    *     lists
405    * @throws IllegalArgumentException if the size of the cartesian product would
406    *     be greater than {@link Integer#MAX_VALUE}
407    * @throws NullPointerException if {@code lists}, any one of the {@code lists},
408    *     or any element of a provided list is null
409    */ static <B> List<List<B>>
410       cartesianProduct(List<? extends List<? extends B>> lists) {
411     return CartesianList.create(lists);
412   }
413 
414   /**
415    * Returns every possible list that can be formed by choosing one element
416    * from each of the given lists in order; the "n-ary
417    * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
418    * product</a>" of the lists. For example: <pre>   {@code
419    *
420    *   Lists.cartesianProduct(ImmutableList.of(
421    *       ImmutableList.of(1, 2),
422    *       ImmutableList.of("A", "B", "C")))}</pre>
423    *
424    * <p>returns a list containing six lists in the following order:
425    *
426    * <ul>
427    * <li>{@code ImmutableList.of(1, "A")}
428    * <li>{@code ImmutableList.of(1, "B")}
429    * <li>{@code ImmutableList.of(1, "C")}
430    * <li>{@code ImmutableList.of(2, "A")}
431    * <li>{@code ImmutableList.of(2, "B")}
432    * <li>{@code ImmutableList.of(2, "C")}
433    * </ul>
434    *
435    * <p>The result is guaranteed to be in the "traditional", lexicographical
436    * order for Cartesian products that you would get from nesting for loops:
437    * <pre>   {@code
438    *
439    *   for (B b0 : lists.get(0)) {
440    *     for (B b1 : lists.get(1)) {
441    *       ...
442    *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
443    *       // operate on tuple
444    *     }
445    *   }}</pre>
446    *
447    * <p>Note that if any input list is empty, the Cartesian product will also be
448    * empty. If no lists at all are provided (an empty list), the resulting
449    * Cartesian product has one element, an empty list (counter-intuitive, but
450    * mathematically consistent).
451    *
452    * <p><i>Performance notes:</i> while the cartesian product of lists of size
453    * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory
454    * consumption is much smaller. When the cartesian product is constructed, the
455    * input lists are merely copied. Only as the resulting list is iterated are
456    * the individual lists created, and these are not retained after iteration.
457    *
458    * @param lists the lists to choose elements from, in the order that
459    *     the elements chosen from those lists should appear in the resulting
460    *     lists
461    * @param <B> any common base class shared by all axes (often just {@link
462    *     Object})
463    * @return the Cartesian product, as an immutable list containing immutable
464    *     lists
465    * @throws IllegalArgumentException if the size of the cartesian product would
466    *     be greater than {@link Integer#MAX_VALUE}
467    * @throws NullPointerException if {@code lists}, any one of the
468    *     {@code lists}, or any element of a provided list is null
469    */ static <B> List<List<B>>
470       cartesianProduct(List<? extends B>... lists) {
471     return cartesianProduct(Arrays.asList(lists));
472   }
473 
474   /**
475    * Returns a list that applies {@code function} to each element of {@code
476    * fromList}. The returned list is a transformed view of {@code fromList};
477    * changes to {@code fromList} will be reflected in the returned list and vice
478    * versa.
479    *
480    * <p>Since functions are not reversible, the transform is one-way and new
481    * items cannot be stored in the returned list. The {@code add},
482    * {@code addAll} and {@code set} methods are unsupported in the returned
483    * list.
484    *
485    * <p>The function is applied lazily, invoked when needed. This is necessary
486    * for the returned list to be a view, but it means that the function will be
487    * applied many times for bulk operations like {@link List#contains} and
488    * {@link List#hashCode}. For this to perform well, {@code function} should be
489    * fast. To avoid lazy evaluation when the returned list doesn't need to be a
490    * view, copy the returned list into a new list of your choosing.
491    *
492    * <p>If {@code fromList} implements {@link RandomAccess}, so will the
493    * returned list. The returned list is threadsafe if the supplied list and
494    * function are.
495    *
496    * <p>If only a {@code Collection} or {@code Iterable} input is available, use
497    * {@link Collections2#transform} or {@link Iterables#transform}.
498    *
499    * <p><b>Note:</b> serializing the returned list is implemented by serializing
500    * {@code fromList}, its contents, and {@code function} -- <i>not</i> by
501    * serializing the transformed values. This can lead to surprising behavior,
502    * so serializing the returned list is <b>not recommended</b>. Instead,
503    * copy the list using {@link ImmutableList#copyOf(Collection)} (for example),
504    * then serialize the copy. Other methods similar to this do not implement
505    * serialization at all for this reason.
506    */
507   public static <F, T> List<T> transform(
508       List<F> fromList, Function<? super F, ? extends T> function) {
509     return (fromList instanceof RandomAccess)
510         ? new TransformingRandomAccessList<F, T>(fromList, function)
511         : new TransformingSequentialList<F, T>(fromList, function);
512   }
513 
514   /**
515    * Implementation of a sequential transforming list.
516    *
517    * @see Lists#transform
518    */
519   private static class TransformingSequentialList<F, T>
520       extends AbstractSequentialList<T> implements Serializable {
521     final List<F> fromList;
522     final Function<? super F, ? extends T> function;
523 
524     TransformingSequentialList(
525         List<F> fromList, Function<? super F, ? extends T> function) {
526       this.fromList = checkNotNull(fromList);
527       this.function = checkNotNull(function);
528     }
529     /**
530      * The default implementation inherited is based on iteration and removal of
531      * each element which can be overkill. That's why we forward this call
532      * directly to the backing list.
533      */
534     @Override public void clear() {
535       fromList.clear();
536     }
537     @Override public int size() {
538       return fromList.size();
539     }
540     @Override public ListIterator<T> listIterator(final int index) {
541       return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
542         @Override
543         T transform(F from) {
544           return function.apply(from);
545         }
546       };
547     }
548 
549     private static final long serialVersionUID = 0;
550   }
551 
552   /**
553    * Implementation of a transforming random access list. We try to make as many
554    * of these methods pass-through to the source list as possible so that the
555    * performance characteristics of the source list and transformed list are
556    * similar.
557    *
558    * @see Lists#transform
559    */
560   private static class TransformingRandomAccessList<F, T>
561       extends AbstractList<T> implements RandomAccess, Serializable {
562     final List<F> fromList;
563     final Function<? super F, ? extends T> function;
564 
565     TransformingRandomAccessList(
566         List<F> fromList, Function<? super F, ? extends T> function) {
567       this.fromList = checkNotNull(fromList);
568       this.function = checkNotNull(function);
569     }
570     @Override public void clear() {
571       fromList.clear();
572     }
573     @Override public T get(int index) {
574       return function.apply(fromList.get(index));
575     }
576     @Override public Iterator<T> iterator() {
577       return listIterator();
578     }
579     @Override public ListIterator<T> listIterator(int index) {
580       return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
581         @Override
582         T transform(F from) {
583           return function.apply(from);
584         }
585       };
586     }
587     @Override public boolean isEmpty() {
588       return fromList.isEmpty();
589     }
590     @Override public T remove(int index) {
591       return function.apply(fromList.remove(index));
592     }
593     @Override public int size() {
594       return fromList.size();
595     }
596     private static final long serialVersionUID = 0;
597   }
598 
599   /**
600    * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list,
601    * each of the same size (the final list may be smaller). For example,
602    * partitioning a list containing {@code [a, b, c, d, e]} with a partition
603    * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing
604    * two inner lists of three and two elements, all in the original order.
605    *
606    * <p>The outer list is unmodifiable, but reflects the latest state of the
607    * source list. The inner lists are sublist views of the original list,
608    * produced on demand using {@link List#subList(int, int)}, and are subject
609    * to all the usual caveats about modification as explained in that API.
610    *
611    * @param list the list to return consecutive sublists of
612    * @param size the desired size of each sublist (the last may be
613    *     smaller)
614    * @return a list of consecutive sublists
615    * @throws IllegalArgumentException if {@code partitionSize} is nonpositive
616    */
617   public static <T> List<List<T>> partition(List<T> list, int size) {
618     checkNotNull(list);
619     checkArgument(size > 0);
620     return (list instanceof RandomAccess)
621         ? new RandomAccessPartition<T>(list, size)
622         : new Partition<T>(list, size);
623   }
624 
625   private static class Partition<T> extends AbstractList<List<T>> {
626     final List<T> list;
627     final int size;
628 
629     Partition(List<T> list, int size) {
630       this.list = list;
631       this.size = size;
632     }
633 
634     @Override public List<T> get(int index) {
635       checkElementIndex(index, size());
636       int start = index * size;
637       int end = Math.min(start + size, list.size());
638       return list.subList(start, end);
639     }
640 
641     @Override public int size() {
642       return IntMath.divide(list.size(), size, RoundingMode.CEILING);
643     }
644 
645     @Override public boolean isEmpty() {
646       return list.isEmpty();
647     }
648   }
649 
650   private static class RandomAccessPartition<T> extends Partition<T>
651       implements RandomAccess {
652     RandomAccessPartition(List<T> list, int size) {
653       super(list, size);
654     }
655   }
656 
657   /**
658    * Returns a view of the specified string as an immutable list of {@code
659    * Character} values.
660    *
661    * @since 7.0
662    */
663   @Beta public static ImmutableList<Character> charactersOf(String string) {
664     return new StringAsImmutableList(checkNotNull(string));
665   }
666 
667   @SuppressWarnings("serial") // serialized using ImmutableList serialization
668   private static final class StringAsImmutableList
669       extends ImmutableList<Character> {
670 
671     private final String string;
672 
673     StringAsImmutableList(String string) {
674       this.string = string;
675     }
676 
677     @Override public int indexOf(@Nullable Object object) {
678       return (object instanceof Character)
679           ? string.indexOf((Character) object) : -1;
680     }
681 
682     @Override public int lastIndexOf(@Nullable Object object) {
683       return (object instanceof Character)
684           ? string.lastIndexOf((Character) object) : -1;
685     }
686 
687     @Override public ImmutableList<Character> subList(
688         int fromIndex, int toIndex) {
689       checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
690       return charactersOf(string.substring(fromIndex, toIndex));
691     }
692 
693     @Override boolean isPartialView() {
694       return false;
695     }
696 
697     @Override public Character get(int index) {
698       checkElementIndex(index, size()); // for GWT
699       return string.charAt(index);
700     }
701 
702     @Override public int size() {
703       return string.length();
704     }
705   }
706 
707   /**
708    * Returns a view of the specified {@code CharSequence} as a {@code
709    * List<Character>}, viewing {@code sequence} as a sequence of Unicode code
710    * units. The view does not support any modification operations, but reflects
711    * any changes to the underlying character sequence.
712    *
713    * @param sequence the character sequence to view as a {@code List} of
714    *        characters
715    * @return an {@code List<Character>} view of the character sequence
716    * @since 7.0
717    */
718   @Beta public static List<Character> charactersOf(CharSequence sequence) {
719     return new CharSequenceAsList(checkNotNull(sequence));
720   }
721 
722   private static final class CharSequenceAsList
723       extends AbstractList<Character> {
724     private final CharSequence sequence;
725 
726     CharSequenceAsList(CharSequence sequence) {
727       this.sequence = sequence;
728     }
729 
730     @Override public Character get(int index) {
731       checkElementIndex(index, size()); // for GWT
732       return sequence.charAt(index);
733     }
734 
735     @Override public int size() {
736       return sequence.length();
737     }
738   }
739 
740   /**
741    * Returns a reversed view of the specified list. For example, {@code
742    * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3,
743    * 2, 1}. The returned list is backed by this list, so changes in the returned
744    * list are reflected in this list, and vice-versa. The returned list supports
745    * all of the optional list operations supported by this list.
746    *
747    * <p>The returned list is random-access if the specified list is random
748    * access.
749    *
750    * @since 7.0
751    */
752   public static <T> List<T> reverse(List<T> list) {
753     if (list instanceof ImmutableList) {
754       return ((ImmutableList<T>) list).reverse();
755     } else if (list instanceof ReverseList) {
756       return ((ReverseList<T>) list).getForwardList();
757     } else if (list instanceof RandomAccess) {
758       return new RandomAccessReverseList<T>(list);
759     } else {
760       return new ReverseList<T>(list);
761     }
762   }
763 
764   private static class ReverseList<T> extends AbstractList<T> {
765     private final List<T> forwardList;
766 
767     ReverseList(List<T> forwardList) {
768       this.forwardList = checkNotNull(forwardList);
769     }
770 
771     List<T> getForwardList() {
772       return forwardList;
773     }
774 
775     private int reverseIndex(int index) {
776       int size = size();
777       checkElementIndex(index, size);
778       return (size - 1) - index;
779     }
780 
781     private int reversePosition(int index) {
782       int size = size();
783       checkPositionIndex(index, size);
784       return size - index;
785     }
786 
787     @Override public void add(int index, @Nullable T element) {
788       forwardList.add(reversePosition(index), element);
789     }
790 
791     @Override public void clear() {
792       forwardList.clear();
793     }
794 
795     @Override public T remove(int index) {
796       return forwardList.remove(reverseIndex(index));
797     }
798 
799     @Override protected void removeRange(int fromIndex, int toIndex) {
800       subList(fromIndex, toIndex).clear();
801     }
802 
803     @Override public T set(int index, @Nullable T element) {
804       return forwardList.set(reverseIndex(index), element);
805     }
806 
807     @Override public T get(int index) {
808       return forwardList.get(reverseIndex(index));
809     }
810 
811     @Override public int size() {
812       return forwardList.size();
813     }
814 
815     @Override public List<T> subList(int fromIndex, int toIndex) {
816       checkPositionIndexes(fromIndex, toIndex, size());
817       return reverse(forwardList.subList(
818           reversePosition(toIndex), reversePosition(fromIndex)));
819     }
820 
821     @Override public Iterator<T> iterator() {
822       return listIterator();
823     }
824 
825     @Override public ListIterator<T> listIterator(int index) {
826       int start = reversePosition(index);
827       final ListIterator<T> forwardIterator = forwardList.listIterator(start);
828       return new ListIterator<T>() {
829 
830         boolean canRemoveOrSet;
831 
832         @Override public void add(T e) {
833           forwardIterator.add(e);
834           forwardIterator.previous();
835           canRemoveOrSet = false;
836         }
837 
838         @Override public boolean hasNext() {
839           return forwardIterator.hasPrevious();
840         }
841 
842         @Override public boolean hasPrevious() {
843           return forwardIterator.hasNext();
844         }
845 
846         @Override public T next() {
847           if (!hasNext()) {
848             throw new NoSuchElementException();
849           }
850           canRemoveOrSet = true;
851           return forwardIterator.previous();
852         }
853 
854         @Override public int nextIndex() {
855           return reversePosition(forwardIterator.nextIndex());
856         }
857 
858         @Override public T previous() {
859           if (!hasPrevious()) {
860             throw new NoSuchElementException();
861           }
862           canRemoveOrSet = true;
863           return forwardIterator.next();
864         }
865 
866         @Override public int previousIndex() {
867           return nextIndex() - 1;
868         }
869 
870         @Override public void remove() {
871           checkRemove(canRemoveOrSet);
872           forwardIterator.remove();
873           canRemoveOrSet = false;
874         }
875 
876         @Override public void set(T e) {
877           checkState(canRemoveOrSet);
878           forwardIterator.set(e);
879         }
880       };
881     }
882   }
883 
884   private static class RandomAccessReverseList<T> extends ReverseList<T>
885       implements RandomAccess {
886     RandomAccessReverseList(List<T> forwardList) {
887       super(forwardList);
888     }
889   }
890 
891   /**
892    * An implementation of {@link List#hashCode()}.
893    */
894   static int hashCodeImpl(List<?> list) {
895     // TODO(user): worth optimizing for RandomAccess?
896     int hashCode = 1;
897     for (Object o : list) {
898       hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());
899 
900       hashCode = ~~hashCode;
901       // needed to deal with GWT integer overflow
902     }
903     return hashCode;
904   }
905 
906   /**
907    * An implementation of {@link List#equals(Object)}.
908    */
909   static boolean equalsImpl(List<?> list, @Nullable Object object) {
910     if (object == checkNotNull(list)) {
911       return true;
912     }
913     if (!(object instanceof List)) {
914       return false;
915     }
916 
917     List<?> o = (List<?>) object;
918 
919     return list.size() == o.size()
920         && Iterators.elementsEqual(list.iterator(), o.iterator());
921   }
922 
923   /**
924    * An implementation of {@link List#addAll(int, Collection)}.
925    */
926   static <E> boolean addAllImpl(
927       List<E> list, int index, Iterable<? extends E> elements) {
928     boolean changed = false;
929     ListIterator<E> listIterator = list.listIterator(index);
930     for (E e : elements) {
931       listIterator.add(e);
932       changed = true;
933     }
934     return changed;
935   }
936 
937   /**
938    * An implementation of {@link List#indexOf(Object)}.
939    */
940   static int indexOfImpl(List<?> list, @Nullable Object element) {
941     ListIterator<?> listIterator = list.listIterator();
942     while (listIterator.hasNext()) {
943       if (Objects.equal(element, listIterator.next())) {
944         return listIterator.previousIndex();
945       }
946     }
947     return -1;
948   }
949 
950   /**
951    * An implementation of {@link List#lastIndexOf(Object)}.
952    */
953   static int lastIndexOfImpl(List<?> list, @Nullable Object element) {
954     ListIterator<?> listIterator = list.listIterator(list.size());
955     while (listIterator.hasPrevious()) {
956       if (Objects.equal(element, listIterator.previous())) {
957         return listIterator.nextIndex();
958       }
959     }
960     return -1;
961   }
962 
963   /**
964    * Returns an implementation of {@link List#listIterator(int)}.
965    */
966   static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) {
967     return new AbstractListWrapper<E>(list).listIterator(index);
968   }
969 
970   /**
971    * An implementation of {@link List#subList(int, int)}.
972    */
973   static <E> List<E> subListImpl(
974       final List<E> list, int fromIndex, int toIndex) {
975     List<E> wrapper;
976     if (list instanceof RandomAccess) {
977       wrapper = new RandomAccessListWrapper<E>(list) {
978         @Override public ListIterator<E> listIterator(int index) {
979           return backingList.listIterator(index);
980         }
981 
982         private static final long serialVersionUID = 0;
983       };
984     } else {
985       wrapper = new AbstractListWrapper<E>(list) {
986         @Override public ListIterator<E> listIterator(int index) {
987           return backingList.listIterator(index);
988         }
989 
990         private static final long serialVersionUID = 0;
991       };
992     }
993     return wrapper.subList(fromIndex, toIndex);
994   }
995 
996   private static class AbstractListWrapper<E> extends AbstractList<E> {
997     final List<E> backingList;
998 
999     AbstractListWrapper(List<E> backingList) {
1000       this.backingList = checkNotNull(backingList);
1001     }
1002 
1003     @Override public void add(int index, E element) {
1004       backingList.add(index, element);
1005     }
1006 
1007     @Override public boolean addAll(int index, Collection<? extends E> c) {
1008       return backingList.addAll(index, c);
1009     }
1010 
1011     @Override public E get(int index) {
1012       return backingList.get(index);
1013     }
1014 
1015     @Override public E remove(int index) {
1016       return backingList.remove(index);
1017     }
1018 
1019     @Override public E set(int index, E element) {
1020       return backingList.set(index, element);
1021     }
1022 
1023     @Override public boolean contains(Object o) {
1024       return backingList.contains(o);
1025     }
1026 
1027     @Override public int size() {
1028       return backingList.size();
1029     }
1030   }
1031 
1032   private static class RandomAccessListWrapper<E>
1033       extends AbstractListWrapper<E> implements RandomAccess {
1034     RandomAccessListWrapper(List<E> backingList) {
1035       super(backingList);
1036     }
1037   }
1038 
1039   /**
1040    * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
1041    */
1042   static <T> List<T> cast(Iterable<T> iterable) {
1043     return (List<T>) iterable;
1044   }
1045 }